Superconductores: Trenes de levitación magnética. Efecto Meissner.

La superconductividad es la capacidad intrínseca que poseen ciertos materiales para conducir corriente eléctrica con resistencia y pérdida de energía cercanas a cero en ciertas condiciones, siendo una de éstas, el encontrarse a muy bajas temperaturas, cercanas al cero absoluto (-273°C). Esta propiedad fue descubierta en 1911 por el físico holandés Heike Kamerlingh Onnes, cuando observó que la resistencia eléctrica del mercurio desaparecía cuando se enfriaba a 4° Kelvin (-269 °C).

La aparición del superdiamagnetismo es debido a la capacidad del material de crear supercorrientes. Éstas son corrientes de electrones que no disipan energía, de manera que se pueden mantener eternamente sin obedecer el Efecto Joule de pérdida de energía por generación de calor. 
Las corrientes crean el intenso campo magnético necesario para sustentar el efecto Meissner. Estas mismas corrientes permiten transmitir energía sin gasto energético, lo que representa el efecto más espectacular de este tipo de materiales. Debido a que la cantidad de electrones superconductores es finita, la cantidad de corriente que puede soportar el material es limitada. Por tanto, existe una corriente crítica a partir de la cual el material deja de ser superconductor y comienza a disipar energía.

La levitación magnética es el efecto de levitar un elemento por medio de un fenómeno que se fundamenta en el principio de repulsión que tienen dos polos de igual carga magnética, que con el debido control provoca que un cuerpo se mantenga suspendido en el aire.

También este principio se aplica a lo que se denomina efecto Meissner-Ochsenfeld, una propiedad inherente de los superconductores. La superconductividad es una característica de algunos compuestos, los cuales, por debajo de una cierta temperatura crítica, no oponen resistencia al paso de la corriente; es decir: son materiales que pueden alcanzar una resistencia nula. En estas condiciones de temperatura son capaces de transportar energía eléctrica sin ningún tipo de pérdidas, y además poseen la propiedad de rechazar las líneas de un campo magnético aplicado. Se denomina “Efecto Meissner” a esta capacidad. 


El Efecto Meissner- Ochsenfeld fue descubierto por Walther Meissner y Robert Ochsenfeld en 1933, y consiste en que cuando un superconductor se enfría por debajo de determinada temperatura, si se le aplica un campo magnético externo en el interior del superconductor el campo magnético se anula.

Básicamente, los electrones modifican sus órbitas de modo que compensan el campo magnético externo de modo que en el interior, el campo sea nulo. Por el hecho de que existe suficientemente frío, un superconductor no tiene resistencia eléctrica esto requiere necesariamente que el campo magnético en el interior sea cero.

Este efecto puede utilizarse para producir “levitación magnética”:

Cuando se acerca un imán a un superconductor, el superconductor se convierte en un imán de polaridad contraria de modo que “sujeta” al otro imán sobre él. Pero, al contrario que un imán normal (que haría que el otro imán se diera la vuelta y se quedase pegado a él), un superconductor cambia el campo magnético cuando el exterior lo hace, compensándolo, de modo que es capaz de mantener el otro imán fijo en el aire. Se genera una fuerza magnética de repulsión la cual es capaz de contrarrestar el peso del imán produciendo así la levitación del mismo. De hecho, si se aleja el imán del superconductor una vez está cerca, éste cambia de polaridad y lo atrae lo suficiente para mantenerse a la misma distancia. Por tanto un objeto estará bajo levitación magnética cuando la fuerza generada por la repulsión electromagnética es lo suficientemente fuerte para equilibrar el peso del objeto.

Comentarios